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The synthesis of polystyrene-supportedR-selenoacetic acid,R-selenopropionic acid, andR-selenophenylacetic
acid is described. The reaction of the dilithio derivatives of polymer-supportedR-selenocarboxylic acids
with racemic epoxides or optically active styrene oxide afforded polystyrene-supportedγ-substituted
R-selenobutyrolactones. TheR-alkylation reaction ofγ-substituted polystyrene-supportedR-selenobutyro-
lactones provided another route for the synthesis of polystyrene-supportedR,γ-disubstitutedR-selenobu-
tyrolactones. Subsequent oxidation-elimination with an excess of 30% hydrogen peroxide at room temperature
afforded substituted (3- and 5-mono-; 3,4- and 3,5-di) 2(5H)-furanones in high yields and good purities.

Introduction

Polymer-supported reagents have attracted growing interest
because they can provide attractive and practical methods
for the synthesis of libraries as a result of simple operation
and the potential of automation.1 Butenolides are a class of
compounds of current interest because of the potential broad
range of biological activities of natural and unnatural
butenolide-containing products.2 Several soild-phase buteno-
lide syntheses have been reported.3 However, it is still
desirable to develop additional efficient solid-phase meth-
odologies for the synthesis of butenolides. Polymers with
selenium functionalities have been known for a long time.4

It would be interesting to develop solid-phase organosele-
nium chemistry with a combined advantage of decreased
volatility and simplification of product workup. Recently,
selenium-based approaches for solid-phase organic synthesis
have been reported by our group and others.3a,3b,5Fujita et
al.3a,3breported the preparation of the correspondingγ-sub-
stitutedγ-lactones from (E)-4-phenyl-but-3-enoic acid and
(E)-3-hexenoic acid using polystyrene-bound selenocyanate
or selenenyl bromide. However, this solid-phase synthetic
method seems to have some limitations, such as a lower yield
and a higher reaction temperature. Furthermore, to the best
of our knowledge, no SPOS method has been attempted for
the synthesis of optically active butenolides so far. Herein,
we wish to report a novel solid-phase approach to racemic
or optically active butenolides6 using polymer-supported
R-selenocarboxylic acids (Scheme 1). A remarkable advan-
tage of these new polymer-supported selenium compounds
is their convenience of handing and totally odorless nature,
as compared to the nonbound reagents.

Results and Discussion

The polystyrene-supportedR-seleno group was chosen
since it appears (1) to facilitate the generation of the
selenium-stabilized adjacent carbanion species, which would
have sufficient nucleophilicity to react with epoxides or alkyl
halides before or after the construction of theγ-lactone ring,
and (2) to be a versatile traceless linker that can be easily
cleaved by oxidation-elimination to form a double bond in
the final products.

The polystyrene-supportedR-selenocarboxylic acids4 can
be prepared by the reaction of polystyrene-supported sodium
selenide35c,5l with R-bromocarboxylic acids2 (Scheme 2).
Polystyrene-supportedR-selenopropionic acid4b can also
be synthesized by subsequently treatingR-selenoacetic acid
resin 4a with lithium diisopropylamide and methyl iodide
in high yield. The minimum loadings of COOH of resins
4a-4c, verified by their FT-IR spectra showing a strong

* To whom correspondence should be addressed. E-mail: huangx@
mail.hz.zj.cn.

† Zhejiang University.
‡ Jiangxi Normal University.
§ Shanghai Institute of Organic Chemistry.

Scheme 1

Scheme 2

273J. Comb. Chem.2003,5, 273-277

10.1021/cc020066l CCC: $25.00 © 2003 American Chemical Society
Published on Web 02/14/2003



carbonyl absorption at 1700-1710 cm-1, were determined
by acid-base titration7 to be 1.27 mmol/g (4a, R1 ) H),
1.20 mmol/g (4b, R1 ) CH3), and 1.12 mmol/g (4c, R1 )
Ph), respectively. Resin4 can be stored at room temperature
for a long period of time without diminution of capacity or
the liberation of a foul smell.

The dianion resin5a-5cwas easily generated by treating
resins4a-4c with lithium diisopropylamide8 (Scheme 3).
Treatment of5a-5c with epoxides6a-6h in THF afforded
γ-hydroxy-R-selenocarboxylic acid resins7aa-7ch. The
lactonization of resins7aa-7ch would be the key for the
success of this protocol. Here, the lactonization was inves-
tigated starting fromR-selenoacetic acid resin4aand styrene
oxide6a. When DCC/DMAP was used at room temperature
or under reflux in CH2Cl2 or THF for 5 h oreven for a longer
time, the lactonization on solid-phase was not complete, as
monitored by an FT-IR study, which showed two moderately
strong peaks of carbonyl absorptions at 1702 and 1770 cm-1.
The lactonization with benzenesulfonyl chloride/pyridine9

and EDAC/DMAP6a was better. However, the best result was
obtained when the reaction suspension in THF was heated
6b under reflux temperature for 8 h after being acidified with
glacial acetic acid. The FT-IR spectrum of resin8aashowed
a single strong carbonyl peak at 1770 cm-1 and the complete
disappearance of carbonyl absorption at 1702 cm-1.

As expected, oxidation-elimination of resins8aa-8chwas
very rapid and efficient with excess of 30% hydrogen
peroxide at room temperature to afford the corresponding
substituted 2(5H)-furanones9aa-9ch in good yields (80-
90%) and with high purity (Table 1). The residual resin,
polystyrene-supported phenylseleninic acid10, was obtained
as a byproduct whose infrared data was identical to the
previously reported data10 and showed no residual carbonyl
absorption. Resin10could be converted to resin4 for recycle
by treatment of it with KI/Na2S2O3

11 followed by NaBH4
5p

andR-bromocarboxylic acids. Similarly, the treatment of5a
with cyclohexene oxide6f gave 4,5-disubstituted 2(5H)-
furanone9af, but the yield and purity were not satisfactory
(entry 6, Table 1).

It should be noted that in the case ofR-selenopropionic
acid resin4b (entries 8-11, Scheme 3 and Table 1), the
oxidative cleavage of the correspondingR-seleno-γ-butyro-
lactone resins resulted in the exclusively formation of the
corresponding 3,5-disubstituted 2(5H)-furanones9ba-9be,
with no R-methylene-γ-butyrolactone being detected by1H
NMR spectra. However, the reaction of the dianion5b with
cyclohexene oxide6f (Scheme 4) followed by oxidation-
elimination generated a 92:8 mixture (GLC analysis) of

trans-R-methylene-γ-butyrolactone12 and bicyclic buteno-
lide 13 in 80% overall yield based on resin4b, which is
similar to the solution-phase process.6c

An attempt to use the anion of polystyrene-supported
R-seleno ethyl acetate, prepared from ethyl bromoacetate
with the sodium selenide resin3, for the reaction with
propylene oxide gave an unsatisfactory result, 5-methyl-
2(5H)-furanone being obtained in a low yield (45%).

With our successful synthesis of racemic 2(5H)-furanones
based on the polystyrene-supportedR-selenocarboxylic acids,
we studied the reaction of (R)-styrene oxide6h with the
dianion resins5a-5c in the same procedure as that of
racemic epoxides. The results are summarized in Table 2.
We found that the reaction proceeded smoothly to give the

Scheme 3 Table 1. Yields and Purities of Substituted 2(5H)-Furanones

entry
R1

(resin4) (epoxide6) R2, R3
producta

9
yieldb

(%)
purityc

(%)

1 H (4a) Ph, H(6a) 9aa 86 88
2 H (4a) C6H5OCH2, H (6b) 9ab 90 >95
3 H (4a) m-CH3C6H4OCH2, H (6c) 9ac 85 91
4 H (4a) C6H5CH2OCH2, H (6d) 9ad 83 >95
5 H (4a) n-BuOCH2, H (6e) 9ae 84 92
6 H (4a) -(CH2)4- (6f) 9af 76 85
7 H (4a) CH3, H (6g) 9ag 90 92
8 CH3 (4b) Ph, H (6a) 9ba 88 91
9 CH3 (4b) C6H5OCH2, H (6b) 9bb 83 >95

10 CH3 (4b) C6H5CH2OCH2, H (6d) 9bd 80 >95
11 CH3 (4b) n-BuOCH2, H (6e) 9be 83 >95
12 Ph (4c) Ph, H (6a) 9ca 82 >95
13 Ph (4c) CH3, H (6g) 9cg 78 92

a All final products were characterized by1H NMR, IR, and MS
spectra.b Overall yield based on the loading of resin4. c Purity
determined by1H NMR spectra (400 MHz) of crude cleavage
product using CH2Br2 as an internal standard.

Scheme 4

Table 2. Yields and Purities of Optically Active Substituted
2(5H)-Furanones

a All final products were characterized by1H NMR, IR, and MS
spectra.b Overall yield based on the loading of resin4. c Purity
determined by1H NMR spectra (400 MHz) of crude cleavage
product using CH2Br2 as an internal standard.d Determined by
HPLC on a Chiralpak As column (4.6 mm× 250 mm), gradient
elution with hexane/2-propanol.
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expected products (5R)-2(5H)-furanones 9ah-9ch with
retention of configuration (>99.0% ee) in good yields and
high purities.

Finally, the one-pot reaction ofR-alkylation to the
polystyrene-supportedR-selenobutyrolactones14 followed
by oxidation-elimination as above led to the 3,5-disubsti-
tuted 2(5H)-furanones16 in moderate to good yields. Typical
examples are shown in Scheme 5 and Table 3.

In conclusion, we have developed an efficent method for
the solid-phase construction of 5-mono-, 3,5-, and 4,5-
disubstituted 2(5H)-furanones in high yields and good
purities employing a selenium-based traceless linker strategy.
Although an excess amount of reagents was required, higher
yields were achieved, as compared to those of the corre-
sponding solution-phase synthesis. The considerably simpli-
fied workup procedure replaces the time-consuming isolation
and purification steps in the corresponding solution-phase
synthesis. Furthermore, the described technology and se-
quence has potential applications in combinatorial synthesis
of butenolide-containing natural product libraries for chemi-
cal biological screening and the drug discovery process.

Experimental Section

General Methods.Starting materials were obtained from
commercial suppliers and used without further purification.
THF was distilled under N2 from sodium/benzophenone
immediately prior to use. (R)-Styrene oxide and polystyrene
(H 1000, 100-200 mesh, cross-linked with 1% divinylben-
zene) for the preparation of selenenyl bromide resin (1.45
mmol Br/g) according to the procedure described by Nico-
laou and co-workers5c was purchased from commercial
sources. Other epoxides were prepared according to the
literature procedures.12,13Melting points were uncorrected.1H
NMR (400 MHz) and13C NMR (100 MHz) spectra were
recorded on a Bruker Avance (400 MHz) spectrometer using
CDCl3 as the solvent and TMS as the internal standard. Mass
spectra (EI, 70 eV) were recorded on a HP5989B mass
spectrometer. Infrared spectra were recorded on a Bruker

Vector 22 spectrometer. Microanalyses were performed with
a Carlo-Erba 1106 elemental analyzer. The samples were
further purified by TLC for13C NMR and microanalyses.

General Procedure for the Preparation of Polystyrene-
Supported r-Selenocarboxylic Acids 4.Under a positive
pressure of nitrogen, to polystyrene-supported selenium
bromide1 (1.0 g, 1.45 mmol Br/g) swelled in THF (15 mL)
and DMF (2 mL) for 30 min was added NaBH4 (3 mmol).
After 6 h with stirring at room temperature,R-bromo
carboxylic acid2 (2 mmol) in 2 mL of THF was added
slowly, and the mixture was stirred for 10 h. The resin was
collected on a filter and washed successively with saturated
NaHCO3 solution (10 mL), H2O (2 × 20 mL), THF (2× 5
mL), and CH2Cl2 (2 × 5 mL) and then dried under vacuum
overnight to afford resin4.

General Procedure for the Preparation of 2(5H)-
Furanone 9.Resin4a (0.787 g, 1.0 mmol) was swelled in
THF (15 mL) at room temperature for 30 min. After cooling
to 0 °C, a solution of LDA (1.1 mL, 2.0 M) was added under
nitrogen, and the mixture was stirred for 1 h at thesame
temperature. Then a solution of styrene oxide6a (0.132 g,
1.1 mmol) in THF (2 mL) was added, and the reaction
mixture was warmed to room temperature and stirred for 5
h. The suspension was treated with glacial acetic acid (0.5
mL) and heated under reflux for 8 h, cooled to room
temperature, and filtered. The resin was washed successively
with saturated NaHCO3 solution (10 mL), H2O (2× 20 mL),
THF (2 × 5 mL), MeOH (2× 5 mL) and CH2Cl2 (2 × 5
mL). The washed resin8aa was preswollen with THF (15
mL), followed by the treatment with 30% hydrogen peroxide
(1 mL, 11.6 mmol). The reaction suspension was stirred at
room temperature for 30 min, and then the resin was filtered
off and rinsed with THF (4× 3 mL). The filtrate was then
neutralized with saturated NaHCO3 solution and extracted
with ether. The organic extracts were washed with water,
dried over anhydrous Na2SO4, and concentrated to afford
product 5-phenyl-2(5H)-furanone (0.138 g, 86% overall
yield), (9aa).15 1H NMR δ 7.54-7.33(m, 5H), 7.28-7.26
(m, 1H), 6.24 (dd,J ) 6.4, 2.0 Hz, 1H), 6.01 (s, 1H). MS
(m/e) 160 (M+, 62), 131 (95), 115 (32), 105 (100), 77 (81),
51 (54). IR (neat) 1756, 1622, 1602, 1493, 1158, 1091, 1032
cm-1. The following compounds were synthesized using the
above protocol.

5-Phenoxymethyl-2(5H)-furanone (9ab).mp 81-82 °C
(lit.14 82-83 °C). 1H NMR δ 7.61 (dd,J ) 5.9, 1.5 Hz,
1H), 7.31-7.26 (m, 2H), 7.02-6.98 (m, 1H), 6.90-6.88 (m,
2H), 6.24 (dd,J ) 5.7, 1.9 Hz, 1H), 5.35 (m, 1H), 4.29-
4.25 (m, 1H), 4.16-4.12 (m, 1H). MS (m/e) 190 (M+), 107
(100), 77 (93), 51 (34); IR (neat) 1762, 1599, 1492, 1251,
1162 cm-1.

5-(m-Methylphenoxymethyl)-2(5H)-furanone (9ac).Col-
orless oil.1H NMR δ 7.59 (d,J ) 4.5 Hz, 1H), 7.15 (t,J )
6.4 Hz, 1H), 7.78 (d,J ) 7.1 Hz, 1H), 6.68 (t,J ) 7.8 Hz,
2H), 6.21 (s, 1H), 5.32 (s, 1H), 4.21-4.18 (m, 1H), 4.14-
4.10 (m, 1H), 2.30 (s, 3H).13C NMR 173.6, 158.0, 153.8,
139.8, 129.4, 122.8, 122.6, 115.6, 111.5, 81.3, 67.3, 21.5.
MS (m/e) 204 (M+), 121 (100), 91 (91), 77 (22), 65 (33).
Anal. Calcd for C12H12O3: C, 70.57; H, 5.92. Found: C,
70.55; H, 6.01. IR (neat) 1762, 1605, 1511, 1288, 1158 cm-1.

Scheme 5

Table 3. Synthesis of 3,5-Disubstituted 2(5H)-Furanones
Starting from Resin14

entry R2 (resin14) R4X
producta

16
yield
(%)b

purityc

(%)

1 CH3 (14a) CH3I 16a 81 >95
2 m-CH3C6H4OCH2 (14b) CH3I 16b 80 92
3 p-CH3C6H4OCH2 (14c) CH3I 16c 78 >95
4 p-CH3C6H4OCH2 (14d) EtBr 16d 75 NDd

a All final products were characterized by1H NMR, IR, and MS
spectra.b Overall yield based on the loading of the resin4. c Purity
determined by1H NMR spectra (400 MHz) of crude cleavage
product using CH2Br2 as an internal standard.d Not determined.
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5-Benzyloxymethyl-2(5H)-furanone (9ad).14 Colorless
oil; 1H NMR δ 7.50 (dd,J ) 5.7, 1.4 Hz, 1H), 7.37-7.30
(m, 5H), 6.16 (dd,J ) 5.7, 1.8 Hz, 1H), 5.18-5.16 (m, 1H),
4.57 (s, 2H), 3.75-3.67 (m, 2H). MS (m/e) (M+ + 1, 17),
204 (M+, 3), 181 (34), 91 (100). IR (neat) 1760, 1600, 1497,
1204, 1096 cm-1.

5-(n-Buoxymethyl)-2(5H)-furanone (9ae).14 Colorless oil.
1H NMR δ 7.48 (dd,J ) 6.4, 1.2 Hz, 1H), 6.11 (dd,J )
6.4, 2.0 Hz, 1H), 5.12-5.09 (m, 1H), 3.64 (Oct ABX,JAB

) 12.4 Hz,JAX ) 10.8 Hz,J BX ) 6.4 Hz, 1H), 3.57 (Oct
ABX, JAB ) 12.4 Hz,JAX ) 10.8 Hz,J BX ) 6.3 Hz, 1H),
3.47-3.40 (m, 2H), 1.51-1.46 (m, 2H), 1.27 (q,J ) 7.81
Hz, 2H), 0.84 (t,J ) 7.20 Hz, 3H); MS (m/e) 171 (M+ + 1,
100), 97 (18), 57 (27), 41 (26); IR (neat) 1759, 1602, 1161,
1205, 1101 cm-1.

4,5-Tetramethylene-2(5H)-furanone (9af).15 Colorless
oil. 1H NMR δ 5.69 (s, 1H), 4.47-4.62 (m, 1H), 2.85-2.82
(m, 1H), 2.53-2.50 (m, 1H), 2.27-2.22 (m, 1H), 2.01-
1.98 (m, 1H), 1.91-1.86 (m, 1H), 1.46-1.20 (m, 3H). MS
(m/e) 138 (M+, 36), 109 (100), 81 (64), 53 (36), 41 (33). IR
(neat) 1753, 1647, 1448, 1168, 1087, 1036 cm-1.

5-Methyl-2(5H)-furanone (9ag).16 Colorless oil.1H NMR
δ 7.46 (d,J ) 6.0 Hz, 1H), 6.11 (d,J ) 5.2 Hz, 1H), 5.15
(m, 1H), 1.46 (d,J ) 6.8 Hz, 3H). MS (m/e) (M+ + 1, 77),
98 (M+, 22), 83 (37), 55 (100), 43 (47). IR (neat) 1756, 1601,
1168, 1108, 1075 cm-1.

3-Methyl-5-phenyl-2(5H)-furanone (9ba).16 Colorless oil.
1H NMR δ 7.47-7.24 (m, 5H), 7.12 (d,J ) 1.1 Hz, 1H),
5.86 (d,J ) 1.1 Hz, 1H), 1.99 (s, 3H); MS (m/e) 174 (M+,
58), 145 (40), 115 (42), 105 (100), 77 (62), 51 (50). IR (neat)
1765, 1602, 1495, 1090, 1046 cm-1.

3-Methyl-5-phenoxymethyl-2(5H)-furanone (9bb). mp
65-66 °C. 1H NMR δ 7.30-7.27 (m, 2H), 7.17 (d,J ) 3.0
Hz, 1H), 6.70-6.87 (m, 3H), 5.22-5.18 (m, 1H), 4.17 (Oct
ABX, JAB ) 26.4 Hz,JAX ) 9.46 Hz,J BX ) 5.45 Hz, 1H),
4.06 (Oct ABX,JAB ) 26.5 Hz,JAX ) 9.66 Hz,J BX ) 5.32
Hz, 1H), 1.96 (s, 3H).13C NMR δ 173.2, 157.5, 145.2, 131,
129.1, 121.1, 114.2, 78.3, 67.3, 10.3. MS (m/e) 204 (M+,
15), 107 (100), 77 (63), 51 (20). Anal. Calcd for C12H12O3:
C, 70.57; H, 5.92. Found: C, 70.51; H, 5.97. IR (KBr) 1759,
1602, 1460, 1374, 1161, 1102, 819 cm-1.

3-Methyl-5-benzyloxymethyl-2(5H)-furane (9bd). Col-
orless oil.1H NMR δ 7.37-7.30 (m, 5H), 5.05-5.02 (m,
1H), 4.6 (s, 2H), 4.57 (d,J ) 3.2 Hz, 1H), 3.64 (dd,J )
1.6, 1.6 Hz, 2H), 1.93 (s, 3H).13C NMR δ 173.9, 146.1,
137.5, 131.2, 128.5, 128.0, 127.7, 80.1, 73.8, 70.0, 10.8. MS
(m/e) 219 (M+ + 1, 22), 218 (M+, 5), 181 (33), 91 (100),
65 (14). Anal. Calcd for C13H14O3: C, 71.54; H, 6.47.
Found: C, 71.58; H, 6.50. IR (neat) 1760, 1600, 1453, 1204,
1102, 1069 cm-1.

3-Methyl-5-(n-buoxymethyl)-2(5H)-furanone (9be).Col-
orless oil.1H NMR δ 7.02 (dd,J ) 3.6, 1.2 Hz, 1H), 4.95-
4.91 (m, 1H), 3.52 (dd,J ) 1.6, 1.6 Hz, 1H), 3.43-3.36
(m, 2H), 1.84 (s, 3H), 1.49-1.42 (m, 2H), 1.29-1.24 (m,
2H), 0.80 (t,J ) 3.2, 3H).13C NMR δ 174.0, 146.3, 130.7,
80.2, 71.7, 70.6, 31.5, 19.1, 13.8, 10.5. MS (m/e) 185 (M+

+.1, 100), 111 (40), 57 (28). Anal. Calcd for C10H16O3: C,
65.19; H, 8.75. Found: C, 65.22; H, 8.80; IR (neat) 1760,
1660, 1378, 1125, 1070 cm-1.

3,5-Diphenyl-2(5H)-furanone (9ca).17 mp 108-109 °C
(lit. 108-109 °C). 1H NMR δ 7.90-7.88 (m, 2H), 7.62 (d,
J ) 1.6 Hz, 1H), 7.44-7.31 (m, 8H), 6.01 (d,J ) 1.6 Hz,
1H); MS (m/e) 236 (M+, 74), 105 (100), 77 (90), 51 (78),
41 (50). IR (KBr) 1740, 1625, 1120, 1050 cm-1.

3-Phenyl-5-methyl-2(5H)-furanone (9cg).16 Colorless oil.
1H NMR δ 8.14-7.5 (m, 2H), 7.56 (d,J ) 1.5 Hz, 1H),
7.44-7.38 (m, 3H), 5.18-5.13 (m, 1H), 1.52 (d,J ) 6.8
Hz, 3H). MS (m/e) 174 (M+, 32), 105 (31), 103 (100), 84
(85), 77 (41), 51 (30). IR (neat) 1756, 1602, 1493, 1450,
1321, 1132, 1114, 973 cm-1.

(5R)-5-Phenyl-2(5H)-furanone (9ah).17 Colorless oil.1H
NMR δ 7.50 (dd,J ) 6.4, 1.2 Hz, 1H), 7.38-7.35 (m, 3H),
7.72-7.23 (m, 2H), 6.19 (dd,J ) 6.4, 1.6 Hz, 1H), 6.01 (s,
1H). MS (m/e) 160 (M+, 62), 131 (95), 115 (32), 105 (100),
77 (81), 51 (54). IR (neat) 1756, 1624, 1600, 1495, 1158,
1090, 1030 cm-1.

(5R)-3-Methyl-5-phenyl-2(5H)-furanone (9bh).17 Color-
less oil. 1H NMR δ 7.35-7.21 (m, 5H), 7.10 (d,J ) 1.2
Hz, 1H), 5.83 (d,J ) 1.2 Hz, 1H), 1.95 (s, 3H). MS (m/e)
174 (M+, 58), 145 (40), 115 (42), 105 (100), 77 (62), 51
(50). IR (neat) 1760, 1602, 1496, 1092, 1047 cm-1.

(5R)-3,5-Diphenyl-2(5H)-furanone (9ch).17 mp 107-108
°C (lit. 108-109 °C). 1H NMR δ 7.91-7.88 (m, 2H), 7.61
(d, J ) 1.9 Hz, 1H), 7.44-7.32 (m, 8H), 6.02 (d,J ) 1.9
Hz, 1H). MS (m/e) 236 (M+, 74), 105 (100), 77 (90), 51
(78), 41 (50). IR (KBr) 1739, 1626, 1119, 1055 cm-1.

3,5-Dimethyl-2(5H)-furanone (16a).16 1H NMR δ 7.08
(d, J ) 1.6 Hz, 1H), 5.05-4.99 (m, 1H), 1.95 (d,J ) 1.7
Hz, 3H), 1.36 (s, 3H). MS (m/e) 112 (M+, 8), 97 (11), 69
(29), 55 (51), 43 (100). IR (neat) 1752, 1600, 1449, 1323,
1209, 1082, 1028, 998 cm-1.

3-Methyl-5-(m-methylphenoxymethyl)-2(5H)-fura-
none (16b).Colorless oil.1H NMR δ 7.17-7.14 (m, 2H),
6.79 (d,J ) 7.5 Hz, 1H), 6.69 (t,J ) 8.0 Hz, 2H), 5.19 (s,
1H), 4.19-4.15 (m, 1H), 4.08-4.04 (m, 1H), 2.32 (s, 3H),
1.96 (s, 3H).13C NMR δ 174.1, 158.4, 146.2, 140.1, 131.9,
130.0, 122.9, 116.0, 111.9, 79.3, 68.2, 21.9, 11.2. MS (m/e)
218 (M+, 23), 121 (100), 91 (78), 77 (19), 65 (27). Anal.
Calcd for C13H14O3: C, 71.54; H, 6.47. Found: C, 71.50;
H, 6.51. IR (neat) 1761, 1603, 1585, 1490, 1176, 1106, 1075
cm-1.

3-Methyl-5-(p-methylphenoxymethyl)-2(5H)-furanone
(16c).mp 78-79 °C. 1H NMR δ 7.15 (d,J ) 1.5 Hz, 1H),
7.07 (d,J ) 8.3 Hz, 2H), 6.81 (d,J ) 8.3 Hz, 2H), 5.18 (m,
1H), 4.14-4.11 (m, 1H), 4.07-4.03 (m, 1H), 2.27 (s, 3H),
1.94 (s, 3H).13C NMR δ 173.8, 156.0, 145.8, 131.4, 130.9,
130.0, 114.5, 79.0, 68.1, 20.4, 10.7. MS (m/e) 218 (M+, 24),
121 (100), 91 (70), 77 (19), 65 (26). Anal. Calcd for
C13H14O3: C, 71.54; H, 6.47. Found: C, 71.52; H, 6.45. IR
(KBr) 1751, 1612, 1513, 1444, 1296, 1237, 1114, 1076 cm-1.

3-Ethyl-5-(p-methylphenoxymethyl)-2(5H)-furanone
(16d). mp 91-92 °C. 1H NMR δ 7.21 (d,J ) 1.5 Hz, 1H),
7.16 (d,J ) 8.3 Hz, 2H), 6.86 (d,J ) 8.5 Hz, 2H), 5.29 (m,
1H), 4.26-4.22 (m, 1H), 4.14-4.10 (m, 1H), 2.44 (q,J )
1.9 Hz, 2H), 2.36 (s, 3H), 1.27 (t,J ) 7.4 Hz, 3H).13C
NMR δ 173.2, 156.0, 144.3, 137.5, 130.9, 130.0, 114.6, 79.1,
68.2, 20.4, 18.8, 11.7. MS (m/e) 232 (M+, 24), 121 (100),
91 (58), 77 (17), 65 (18), 41 (17). Anal. Calcd for
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C14H16O3: C, 72.39; H, 6.94. Found: C, 72.41; H, 6.97. IR
(KBr) 1751, 1612, 1514, 1255, 1110, 1076, 817 cm-1.

4,5-Tetramethylene-r-methylene Lactone (12).6d Color-
less oil.1H NMR δ 6.02 (d,J ) 3.21 Hz, 1H), 5.35 (d,J )
3.20 Hz, 1H), 3.71-3.65 (m, 1H), 2.40-1.18 (m, 9H). MS
(m/e) 153 (M+ + 1, 100), 135 (33), 124 (30), 95 (25), 53
(18), 41 (16). IR (neat) 1771, 1671, 1447, 1251, 1206, 996
cm-1.
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